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Australia 3083 

Received 24 July 1979 

Abstract. We show how it is relatively straightforward to deduce the Kruskal line element 
directly from the vacuum field equations, thereby avoiding the conventional approach 
which sets out from the analytic continuation of the Schwarzschild metric. 

1. Introduction 

Present discussions leading to the Kruskal (1960) and Szekeres (1960) maximal 
space-time for spherically symmetric vacuum fields invariably follow the sequence of 
historical development. Thus one obtains first the usual Schwarzschild exterior metric 

ds2= (1 -$) dt2 - (1 -$)-I dr2 - r2 dn2 ,  

discovers that r = 2m is a coordinate singularity and then proceeds to eliminate it by an 
appropriate coordinate transformation ( t ,  r )  -+ (U, U )  which exhibits the full geometric 
structure. 

Although this sequence involving analytic continuation (see Misner et a1 1973, 
Adler et a1 1975) has proved to be the natural one historically, there appears to be an 
alternative way of proceeding which avoids the analytic continuation step in the 
sequence. This procedure, which we outline below, is to solve the field equations 
directly in terms of Kruskal type coordinates U, U and then invoke the uniqueness 
implied by the Birkhoff theorem to identify the resulting solution with the Schwarz- 
schild metric (1). The consequent complete display of the topology of spherically 
symmetric vacuum space-time then proceeds as in the conventional sequence of 
discussion. 

Our work below, outlining the alternative step to coordinate transformations, turns 
out to be relatively simple mathematically and in our opinion affords some new insights 
into this most fundamental of problems in general relativity. We feel it should represent 
a useful approach complementary to the conventional one. 

2. Direct calculation of the Kruskal metric 

We define Kruskal type coordinates U, U by insisting that the metric in these coordinates 
take the particular non-static spherically symmetric form 

ds2 = A(dv2 - du2)  - B dn2.  (2) 
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Here A and B are to be positive non-vanishing functions of U and U ,  with B clearly 
coinciding with the square of the radial marker r in the Schwarzschild metric (1). Radial 
light rays (ds2 = 0, d e  = d 4  = 0) are here simply straight lines U = *U and consequently 
the possible world lines of material test particles and photons can be immediately 
envisaged in the (U, U )  space-time diagram. 

We substitute the metric ( 2 )  into the vacuum field equation R,, = 0. There are only 
four independent non-vanishing Ricci tensor components Roo, R I  1 ,  R22 (= sin2 OR3& 
Rol.  By convenient linear combinations we write the four field equations as 

= O  
B+E B 2 + i 2  A B + B  

Roo+tR11=--+,+ 
B 2B A B  (3) 

with ‘dots’ and ‘stars’ denoting partial derivatives with respect to U and U, respectively. 
As the next step, we impose a more stringent coordinate condition than that already 
implicitly adopted via the assumed metric form ( 2 ) ,  by requiring the unknown functions 
A and B to involve the variables U, U only in the general and as yet unspecified 
coordinate combination 

5 = ((U, U), 

that is 

A ( U ,  U )  = A(( )  B(u, U )  =B(5) .  
An examination of the resulting field equations then suggests that a considerable 
simplification may result from a judicious choice of the function 6. Indeed, a little 
experimentation shows that the simple antisymmetric choice 

(7) 2 2  
( = U  - U  

converts the field equations to a non-trivial consistent set in the single variable 6. This 
simplification, in fact, reduces the four field equations to only three in number 
(equations (3) and (6) become the same equation). Apart from non-vanishing factors 
which we omit, they are 

A’B’ 
B 2B2 A B  

BII Bl2 
- 0  

2(B’ + (B”) + A  = 0 (9) 

A 

Here ‘primes’ denote d/d(. 

The above are three ordinary differential equations coupling two unknown 
functions A and B of the single variable 5. We can readily obtain an integral of equation 
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(8), namely 

(B ”’)‘ = K A  (11) 
where K is an arbitrary integration constant. If we use this in turn to eliminate A in 
equation (91, we can integrate the resulting equation completely to obtain the relation 

(12) 6 = H ( B ~ / ~ + L ) ~ K L  e-4KB‘’z 

Here L and H are two further integration constants. Writing for convenience 

(13) 

(we reserve the symbol r = IpI for the Schwarzschild radial marker) we then have the 
two equations (11) and (12), i.e. 

112 p = B  

p f  = K A  
4KL e-4Kp E=H(p+L) 3 

together with the third field equation (lo), which up to this point has not yet been used. 
By differentiating (12’) with respect to p to get 

and substituting into ( l l f ) ,  we immediately obtain a solution for the function A as 

This solution in turn satisfies the third field equation (10) as can be seen by direct 
substitution. Thus in (12’) and (15) we have the complete and consistent solutions of the 
Einstein field equations with three arbitrary integration constants H, K and L. 

The metric functions A and B are, however, only implicitly defined in terms of the 
variable 6 = v 2  - U’. In fact, we can only invert equation (12’) so as to obtain an explicit 
single-valued expression for p ( =  B1l2) in terms of 6, over monotonic sections of the 6 - p  
curve (12’), and hence only over such monotonic sections can we expect the metric 
elements A and B to remain single-valued functions of 6. With this monotonicity in 
mind, we look at the derivative d(/dp in (14) and are strongly motivated to dispose of 
one of the arbitrary integration constants L, by setting 

4KL = 1, 

since this leaves the resulting function 6 only one turning point, namely at p = 0 
(maximum or minimum depending on the remaining constants H and K). At the same 
time possible complex values for 5 resulting from ( p  + L)  < 0 in (12‘), are avoided; 6 is a 
real function of p everywhere. The regions p > 0 and p < 0 are thus clearly monotonic 
with the corresponding Schwarzschild radial marker r = Ip /  ranging from 0 to 00 in both 
regions. Thus we are reduced to the two simpler solutions 
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which represent necessarily single-valued solutions for B and A as functions of 5 over 
the separate regions p > 0 and p < 0. 

It remains now to fix one of the two constants H, K by normalisation and to examine 
distinct possibilities. Thus if we set 

H = 4 K  

and write, for purposes of comparison with the standard Kruskal form, 

4 K  = --1/2m 

we get 
2 2  

( = U  - U  = ( 1 - p / 2 m ) e ~ / ~ ~  

Two possibilities now arise from setting m > 0, p > 0 and m > 0, p < 0 (m < 0, p 5 0 does 
not give anything essentially different). 

(i) For m > O ,  p > O  we get, using the Schwarzschild coordinate r = l p [ ,  the well- 
known Kruskal relation 

t = U 2 - u 2 =  (1 - r / 2 m )  

(18) r 

Here the range of 5 i s  (-00,l)  with 5 = v 2  - u 2  = 1 representing the singular hyperbolae 
beyond which test particles and light cannot progress. 

(ii) For m > 0, p < 0 we have 

6 E U - = (1 -I- r/2m ) 

(which is just the solution (18) with m + -m) .  

U the space-like coordinate. Thus if we write 
Here the metric component A is negative, indicating that U is now the time-like and 

v’zz U u ’=v  A’= -A 

we have 

r 

The range of 5’ is here (-1,O). 
The two soiutions (18) and (19) must, by Rirkhoff’s theorem, correspond to the 

Schwarzschild solution (I)  with m > 0 and m < 0. To decide which corresponds to 
which (and here we cannot arbitrate on this point a priori since we do not have a 
coordinate transformation) it is necessary only to examine radial freely falling test 
particles to show that the metric (18) corresponds to the metric (1) with m > 0 ,  and as a 
consequence (or independently) to deduce that (19) corresponds to the unphysical 
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(gravitationally repulsive) case of metric (1) with m < O .  This second case (19), quite 
apart from its unphysical Vmetric, is of no interest for the further reason that the 
corresponding Schwarzschild metric (m < 0) bas no coordinate singularity anyway and 
so gives a complete description of this unphysical space-time already. 
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